Structural changes of nucleosomal particles and isolated core-histone octamers induced by chemical modification of lysine residues.

نویسندگان

  • M A Nieto
  • E Palacián
چکیده

Treatment of nucleosomal particles and isolated core-histone octamers with dimethylmaleic anhydride, but not with acetic anhydride, is accompanied by a biphasic release of the two H2A.H2B dimers, the first dimer being more easily released than the second. With both kinds of particles, 50% of histones H2A and H2B are released for modification of approximately 35% of the histone amino groups. The similar behavior of nucleosomal particles and isolated core-histone octamers is consistent with the same structure of the histone octamer in the nucleosomal particle and in the free octamer in 2 M NaCl. The described release of H2A.H2B dimers allows the preparation of nucleosomal particles deficient in one H2A.H2B dimer and of the histone hexamers H2A.H2B.(H3.H4)2. For more extensive modifications, both reagents, acetic and dimethylmaleic anhydrides, cause the dissociation of nucleosomal particles with liberation of double-stranded DNA, which suggests that lysine amino groups are involved in the binding of histones to DNA. The modified nucleosomal particles are more sensitive to ionic strength than those untreated, and the presence of salt (NaCl) increases the extent of DNA release. The histones corresponding to the liberated DNA, except H2A and H2B released with dimethylmaleic anhydride, are apparently bound to the DNA-containing particles as extra histones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rearrangement of nucleosomal components by modification of histone amino groups. Structural role of lysine residues.

Modification of nucleosomal particles from chicken erythrocytes with the reagents for protein amino groups acetic and dimethylmaleic anhydrides causes a rearrangement of nucleosomal components. Treatment with both reagents is accompanied by liberation of free DNA and formation of residual particles with anomalous histone composition. The residual particles obtained with acetic anhydride contain...

متن کامل

Probing Interactions between Lysine Residues in Histone Tails and Nucleosomal DNA via Product and Kinetic Analysis

The histone proteins in nucleosome core particles are known to catalyze DNA cleavage at abasic and oxidized abasic sites, which are produced by antitumor antibiotics and as a consequence of other modalities of DNA damage. The lysine rich histone tails whose post-translational modifications regulate genetic expression in cells are mainly responsible for this chemistry. Cleavage at a C4'-oxidized...

متن کامل

Nucleosome structural transition during chromatin unfolding is caused by conformational changes in nucleosomal DNA.

We have recently reported that certain core histone-DNA contacts are altered in nucleosomes during chromatin unfolding (Usachenko, S. I., Gavin I. M., and Bavykin, S. G. (1996) J. Biol. Chem. 271, 3831-3836). In this work, we demonstrate that these alterations are caused by a conformational change in the nucleosomal DNA. Using zero-length protein-DNA cross-linking, we have mapped histone-DNA co...

متن کامل

Introducing multiple sites of acetylation to histone H3 via nonsense suppression

A common post-translational modification (PTM) of proteins is lysine acetylation. This is an especially ubiquitous PTM in the histones of chromatin, and is important for helping to regulate both structural and mechanistic aspects of chromatin. The fundamental unit of chromatin is called the nucleosome and is made up of DNA that wraps around a histone protein octamer. Protruding from the nucleos...

متن کامل

Interplay among nucleosomal DNA, histone tails, and corepressor CoREST underlies LSD1-mediated H3 demethylation.

With its noncatalytic domains, DNA-binding regions, and a catalytic core targeting the histone tails, LSD1-CoREST (lysine-specific demethylase 1; REST corepressor) is an ideal model system to study the interplay between DNA binding and histone modification in nucleosome recognition. To this end, we covalently associated LSD1-CoREST to semisynthetic nucleosomal particles. This enabled biochemica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 27 15  شماره 

صفحات  -

تاریخ انتشار 1988